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A multi-method approach. 



About subglacial hydrology

• Subglacial water conditions :

• Control sliding by lubrication

→ Complex physical process but limited observations

Basal sliding

Subglacial hydrology

Ice

• Complex drainage system:

• Channels : spatially discrete

• Cavities : spatially distributed

1 km

Subglacial drainage 
system as modelled
by Werder et al., 2013
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Subglacial channel flow induced noise

(Bartholomaus et al., 2015; 
Gimbert et al.,2016;)

• Subglacial turbulent water flow generates continuous seismic noise (∼ [2-20] Hz)

𝑢
𝑢 𝑡 = 𝐴𝑒𝑖𝜔𝑡

Ground displacement

Amplitude Phase
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Seismic power in the [3 − 10] 𝐻𝑧 band

• Good sensitivity to subglacial water discharge:

• Continuous signal over melt season
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(Nanni et al., 2019)

→ Lacking spatial and phase information
(See also Bartholomaus et al., 2015; 
Röösli et al., 2014;  Lindner et al.,2019;)
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Seismic power in the [3 − 10] 𝐻𝑧 band

• Good sensitivity to subglacial water discharge:
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(Nanni et al., 2019)

DENSE ARRAY
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→ Lacking spatial and phase information
(See also Bartholomaus et al., 2015; 
Röösli et al., 2014;  Lindner et al.,2019;)



Challenge: locate continuous noise source(s)
RESOLVE PROJECT

• 1 month when channels develop

• 100 seismometers
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Challenge: locate continuous noise source(s)

• Typical frequencies : 3 − 20 𝐻𝑧

• Typical wavelengths : 𝜆 ~ 500 − 75 𝑚

• Inter-stations distance: 40 𝑚

• Glacier thickness: ~ 250 𝑚

Sub-wavelength array

Near-field propagation 

→
→

RESOLVE PROJECT

UNIQUE SETUP !
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𝑢 𝑡 = 𝐴𝑒𝑖𝜔𝑡

Amplitude Phase

Amplitude analysis

~ energy differences

Phase analysis

~ time delays

• Seismic power 𝑃𝑤 spatial variability: 
• Source surface signature 

• Dominant sources in time

• Phase difference averaging (> 1 h) prior to 
locating:
• Stack phase differences: keep coherent signal

SPECTROGAMS

time

5

Methods: locate continuous noise source(s)
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𝑢 𝑡 = 𝐴𝑒𝑖𝜔𝑡

Amplitude Phase

Amplitude analysis

~ energy differences

Phase analysis

~ time delays

• Seismic power 𝑃𝑤 spatial variability: 
• Source surface signature 

• Dominant sources in time

• Use long-term period (> 1 h) :
• Stack phase differences: keep coherent signal

SPECTROGAMS

time

NOT SUITABLE
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Methods: locate continuous noise source(s)
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𝑢 𝑡 = 𝐴𝑒𝑖𝜔𝑡

Amplitude Phase

Amplitude analysis

~ energy differences

Phase analysis

~ time delays

• Seismic power 𝑃𝑤 spatial variability: 
• Source surface signature 

• Dominant sources in time

• Use long-term period (> 1 h) :
• Stack phase differences: keep coherent signal

• Perform location analysis at short 
timescales (1 sec), and then look at 
location density maps :
• Phase coherence = individual source location

SPECTROGAMS

time

NOT SUITABLE

(e.g. Corciulo et al., 2012) 
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Methods: locate continuous noise source(s)

1 2



Median amplitude evolution

• High 𝑃𝑤 in the [3 − 20] 𝐻𝑧 frequency range concomitant with increasing 𝑄
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𝑢 𝑡 = 𝑨𝑒𝑖𝜔𝑡

Amplitude dominated by turbulent water flow induced noise→
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Amplitude analysis

• Compute 𝑃𝑤 spatial anomaly over 2 hours

𝑢 𝑡 = 𝑨𝑒𝑖𝜔𝑡

200 m

10 days
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Amplitude spatial variations𝑢 𝑡 = 𝑨𝑒𝑖𝜔𝑡

• Higher 𝑝𝑜𝑤𝑒𝑟 downstream

• Higher 𝑝𝑜𝑤𝑒𝑟 in the middle

• ~ 100 𝑚 variations

200 m
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• Compute 2 hour-𝑃𝑤 spatial anomaly: stack over the whole period

Median anomaly over 30 days
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200 m200 m

Amplitude spatial variations

• Distinct pattern

• Strong heterogneity

• Source effect

• Channels ?

𝑢 𝑡 = 𝑨𝑒𝑖𝜔𝑡

(Nanni et al., in prep.)

R
el

at
iv

e 
am

p
lit

u
d

e
 (

d
B

)

0

4

2

-2

-4

R
el

at
iv

e 
am

p
lit

u
d

e 
(d

B
)

0

4

2

-2

-4

1 selected dayMedian anomaly over 30 days
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• Compute 𝑃𝑤 spatial anomaly: stack over the whole period / 1 day



Amplitude spatio-temporal variations𝑢 𝑡 = 𝑨𝑒𝑖𝜔𝑡

9

Temporal occurrences 
of key patterns

Channels ?



𝑢 𝑡 = 𝑨𝑒𝑖𝜔𝑡
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Channel pattern appears
concomitantly to 𝑄 rise

#1 CAPABLE TO CAPTURE CHANNELS DEVELOPMENT

Channels ?



The beam former method

Source location

𝑢 𝑡 = 𝐴𝒆𝒊𝝎𝒕
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The beam former method

• Assume a unique source over 1 second-signal

• Minimize misfit |Phasemodel − Phaseobserved| (gradient-based minimization)

Source location

𝑢 𝑡 = 𝐴𝒆𝒊𝝎𝒕
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The beam former method

Source location

• Assume a unique source over 1 second-signal

• Minimize misfit |Phasemodel − Phaseobserved| (gradient-based minimization)

• Beam score  ∝ phase coherency ~ location accuracy

Impulsional signal: 
High beam score ~ 1 

𝑢 𝑡 = 𝐴𝒆𝒊𝝎𝒕
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The beam former method

Noise signal:
Low beam score ~ 0,1Source location

??

• Assume a unique source over 1 second-signal

• Minimize misfit |Phasemodel − Phaseobserved| (gradient-based minimization)

• Beam score  ∝ phase coherence ~ location accuracy

Impulsional signal: 
High beam score ~ 1 

𝑢 𝑡 = 𝐴𝒆𝒊𝝎𝒕
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Increasing location precision

• Subglacial water flow: low beam score (several sources are active simultaneously)

• We stack 1 second-location over long time periods (~ days)

Density probability maps

𝑢 𝑡 = 𝐴𝒆𝒊𝝎𝒕
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Density probability maps
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Increasing location precision

• Subglacial water flow: low beam score (noise)

• We stack 1 second-location over long time periods (~ days)

Density probability maps

𝑢 𝑡 = 𝐴𝒆𝒊𝝎𝒕
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Beam score ranges over 10 days  (5 𝐻𝑧)

• Most location are associated with low beam scores (< 0,2)

𝟑. 𝟏𝟎𝟕 locations

𝑢 𝑡 = 𝐴𝒆𝒊𝝎𝒕
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Beam score ranges over 10 days  (5 𝐻𝑧)

• Most location are associated with low beam scores (< 0,2)

• Select 2 beam score ranges

• Select coherent phase velocities [1400 – 2400 𝑚. 𝑠𝑒𝑐−1] and depth

𝟑. 𝟏𝟎𝟕 locations

𝑢 𝑡 = 𝐴𝒆𝒊𝝎𝒕
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Beam score ranges over 10 days  (5 𝐻𝑧)
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200 m

[0.1 – 0.15]
Noise

[0.5 – 0.75]
Crevasses

• Distincts features with coherent phase velocities [1400 – 2400 𝑚. 𝑠𝑒𝑐−1] and depths



Spatial patterns at low beam score

• Focusing on sources location with increasing water discharge

May 5th – May 15th May 16 th – May 26th

200 m

April 24th – May 4th
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Spatial patterns at low beam score

• Focusing on sources location with increasing water discharge

May 16 th – May 26th
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Spatial patterns at low beam score

• Focusing on tsources location with increasing water discharge

(Nanni et al., in prep.)
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• Focusing of the sources location with increasing water discharge

(Nanni et al., in prep.)

200 m 200 m 200 m

April 24th – May 4th May 5th – May 15th May 16 th – May 26th
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#2 CAPABLE TO CAPTURE CHANNELS EVOLUTION
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Conclusions

Phase analysis

 Capture noise sources changes

 Capture channelization onset

 Allows retrieving multiple noise source

 Captures channels location 
continuously

 Capture subglacial hydrology evolution

 Allows for localization <
20 𝑚 resolution

(1 sec-beamformer)Amplitude spatial anomaly Complementary



Conclusions & Perspectives

Amplitude spatial anomaly Phase analysis

 Capture noise sources changes

 Capture channelization onset

∼ Channels not observed full-time

∼ Influence of near field-propagation

∼ Spatial heterogeneity of Τ𝝀 𝟔

 Sensitive to multiple noise source

 Statistically capture channels location

 Capture subglacial hydrology evolution

 < 20 𝑚 resolution

∼Requires multi-day stacking

(1 sec-beamformer)

► Needs for full-waveform modelling (?) 

Complementary



We can map the subglacial hydrology 
network with dense array seismology

Amplitude analysis Phase analysis

Thank you

(Nanni et al., in prep.)

U G O . N A N N I @ U N I V - G R E N O B L E - A L P E S . F R



Median amplitude evolution

• High 𝑃𝑤 in the [3 − 20] 𝐻𝑧 frequency range concomitant with increasing 𝑄
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Amplitude dominated by turbulent water flow induced noise→
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Beam score ranges over 10 days  (5 𝐻𝑧)

• Most location are associated with low beam scores (< 0,2)

• Select 2 beam score ranges

• Select coherent phase velocities and depth [1400 – 2400 𝑚. 𝑠𝑒𝑐−1]

𝟑. 𝟏𝟎𝟕 locations

𝑢 𝑡 = 𝐴𝒆𝒊𝝎𝒕
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Altitude

Glacier 
surface



𝑢 𝑡 = 𝑨𝑒𝑖𝜔𝑡

• Temporal occurrence of key patterns : dominant sources

• Concomitant to 𝑄 rise

• Concomitant to glacier acceleration

(Nanni et al., in prep.)
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Amplitude spatio-temporal variations


