

Mapping the subglacial hydrology network with a dense seismic array

A multi-method approach.

AMERICAN GEOSCIENCES UNION, SAN FRANCISCO 2019

Ugo NANNI¹, Florent GIMBERT¹, Philippe ROUX², Albane LECOINTRE²

¹ UNIV GRENOBLE ALPES, CNRS, IRD, IGE, GRENOBLE, FRANCE
² UNIV GRENOBLE ALPES, CNRS, IRD, ISTERRE, GRENOBLE, FRANCE

About subglacial hydrology

• <u>Subglacial water conditions</u> : <u>Complex drainage system</u>: Control sliding by lubrication • Channels : spatially discrete spatially distributed • Cavities : **Channels** 1 km Ice Subglacial drainage b system as modelled Q (m³ s⁻¹) by Werder et al., 2013 Subglacial hydrology 20.0 5.0 0.5 **Basal sliding**

→ Complex physical process but **limited observations**

Subglacial channel flow induced noise

• Subglacial turbulent water flow generates <u>continuous seismic noise</u> (~ [2-20] Hz)

Seismic power in the [3 - 10] Hz band

- Good sensitivity to subglacial water discharge:
 - Continuous signal over melt season

(Nanni et al., 2019)

(See also Bartholomaus et al., 2015; Röösli et al., 2014; Lindner et al., 2019;)

→ Lacking **spatial** and **phase** information

Seismic power in the [3 - 10] Hz band

- Good sensitivity to subglacial water discharge:
 - Continuous signal over melt season

(Nanni et al., 2019)

(See also Bartholomaus et al., 2015; Röösli et al., 2014; Lindner et al., 2019;)

→ Lacking **spatial** and **phase** information

3

Challenge: locate continuous noise source(s)

- 1 month when <u>channels develop</u>
- 100 seismometers

Challenge: locate continuous noise source(s)

- Typical frequencies : [3 20]Hz
- Typical wavelengths : $\lambda \sim [500 75] m$
- Inter-stations distance: 40 m
- Glacier thickness: $\sim 250 m$

 \rightarrow Near-field propagation

UNIQUE SETUP !

Methods: locate continuous noise source(s)

Amplitude analysis

 \sim energy differences

- Seismic power P_w spatial variability:
 - Source surface signature
 - **Dominant** sources in time

- Phase difference averaging (> 1 h) prior to locating:
 - Stack phase differences: keep <u>coherent</u> signal

Methods: locate continuous noise source(s)

Amplitude analysis

 \sim energy differences

- Seismic power P_w spatial variability:
 - Source surface signature
 - **Dominant** sources in time

Methods: locate continuous noise source(s)

Amplitude

Amplitude analysis

 \sim energy differences

- Seismic power P_w spatial variability:
 - Source surface signature
 - **Dominant** sources in time

Phase analysis $u(t) = Ae^{i\omega t}$ 2 \sim time delays Phase time Use long-term period (≥ NOT SUITABLE • Stack phase differences: keep coherent signal

> Perform location analysis at short timescales (1 sec), and then look at location density maps : (e.g. Corciulo et al., 2012)
> Phase coherence = individual source location

 $u(t) = \mathbf{A}e^{i\omega t}$

Median amplitude evolution

• High P_w in the [3 - 20] Hz frequency range concomitant with increasing Q

 \rightarrow Amplitude dominated by turbulent water flow induced noise

Amplitude analysis

• Compute *P_w* spatial anomaly **over 2 hours**

 $u(t) = \mathbf{A}e^{i\omega t}$

 $u(t) = \mathbf{A}e^{i\omega t}$

Amplitude spatial variations

• Compute 2 hour-*P_w* spatial anomaly: stack over the whole period

- Higher *power* downstream
- Higher *power* in the middle
- ~ 100 m variations

 $u(t) = \mathbf{A}e^{i\omega t}$

Amplitude spatial variations

• Compute P_w spatial anomaly: stack over the whole period / 1 day

 $u(t) = A e^{i\omega t}$

The beam former method

Source location

10

 $u(t) = A e^{i\omega t}$

The beam former method

- Assume a unique source over 1 second-signal
- Minimize misfit | Phase_{model} Phase_{observed} | (gradient-based minimization)

Source location

The beam former method

10

- Assume a unique source over 1 second-signal
- Minimize misfit | Phase_{model} Phase_{observed} | (gradient-based minimization)
- Beam score \propto phase coherency \sim location accuracy

The beam former method

- Assume a unique source over 1 second-signal
- Minimize misfit | Phase_{model} Phase_{observed} | (gradient-based minimization)
- Beam score \propto phase coherence \sim location accuracy

Increasing location precision

- Subglacial water flow: **low beam** score (several sources are active simultaneously)
- We stack 1 second-location over long time periods (~ days)

Increasing location precision

- Subglacial water flow: low beam score (several sources are active simult
- We stack 1 second-location over long time periods (~ days)

Increasing location precision

 $u(t) = A \boldsymbol{e^{i\omega t}}$

• Most location are associated with low beam scores (< 0,2)

- Most location are associated with low beam scores (< 0,2)
 - Select 2 beam score ranges
 - Select coherent phase velocities $[1400 2400 m. sec^{-1}]$ and depth

• Distincts features with coherent phase velocities [1400 – 2400 m. sec⁻¹] and depths

Spatial patterns at low beam score $u(t) = A e^{i\omega t}$ Focusing on sources location with increasing water discharge Q May 5th – May 15th April 24th – May 4th May 16th – May 26th max Density probability 200 m 200 m Flow FION min

Spatial patterns at low beam score $u(t) = A e^{i\omega t}$ Focusing on tsources location with increasing water discharge Q May 5th – May 15th May 16th – May 26th April 24th – May 4th max **Density probability** S' 200 m 200 m 200 m Flow Flow Flow min (Nanni et al., in prep.) 12

#2 CAPABLE TO CAPTURE CHANNELS EVOLUTION $u(t) = A \boldsymbol{e^{i\omega t}}$ • Focusing of the sources location with increasing water discharge Q May 5th – May 15th May 16th – May 26th April 24th – May 4th max Density probability So So 200 m 200 m 200 m Flow Flow Flow min (Nanni et al., in prep.) 12

Conclusions

Complementary

- ✓ Capture noise sources changes
- ✓ Capture channelization onset

Phase analysis (1 sec-beamformer)

- ✓ Allows retrieving multiple noise source
- Captures channels location continuously
- Capture subglacial hydrology evolution
- Allows for localization <</p> 20 m resolution

Conclusions & Perspectives

Complementary

Amplitude spatial anomaly

- ✓ Capture noise sources changes
- ✓ Capture **channelization onset**
- Channels not observed full-time
- ~ Influence of near field-propagation
- ~ Spatial heterogeneity of $\lambda/6$

Phase analysis (1 sec-beamformer)

- ✓ Sensitive to multiple noise source
- ✓ Statistically capture channels location
- Capture subglacial hydrology evolution
- \checkmark < 20 *m* resolution
- ~ Requires multi-day stacking

Needs for full-waveform modelling (?)

We can map the subglacial hydrology network with dense array seismology

 $u(t) = \mathbf{A}e^{i\omega t}$

Median amplitude evolution

• High P_w in the [3 - 20] Hz frequency range concomitant with increasing Q

 \rightarrow Amplitude dominated by turbulent water flow induced noise

- Most location are associated with low beam scores (< 0,2)
 - Select 2 beam score ranges
 - Select coherent phase velocities and depth $[1400 2400 m. sec^{-1}]$

Glacier

$u(t) = Ae^{i\omega t}$ Amplitude spatio-temporal variations

- Temporal occurrence of key patterns : <u>dominant sources</u> 9 က် 2D Cross-Correlation score .sec GPS velocities (mm.h⁻¹ 0.8 0.6 discharge 0.4 6 Water 0.2 0 5 0 22/04 29/04 06/05 13/05 20/05 27/05
 - Concomitant to Q rise

(Nanni et al., in prep.)

• Concomitant to glacier acceleration